Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Radiother Oncol ; 183: 109593, 2023 06.
Article En | MEDLINE | ID: mdl-36870609

BACKGROUND AND PURPOSE: This study aims to build machine learning models to predict radiation-induced rectal toxicities for three clinical endpoints and explore whether the inclusion of radiomic features calculated on radiotherapy planning computerised tomography (CT) scans combined with dosimetric features can enhance the prediction performance. MATERIALS AND METHODS: 183 patients recruited to the VoxTox study (UK-CRN-ID-13716) were included. Toxicity scores were prospectively collected after 2 years with grade ≥ 1 proctitis, haemorrhage (CTCAEv4.03); and gastrointestinal (GI) toxicity (RTOG) recorded as the endpoints of interest. The rectal wall on each slice was divided into 4 regions according to the centroid, and all slices were divided into 4 sections to calculate region-level radiomic and dosimetric features. The patients were split into a training set (75%, N = 137) and a test set (25%, N = 46). Highly correlated features were removed using four feature selection methods. Individual radiomic or dosimetric or combined (radiomic + dosimetric) features were subsequently classified using three machine learning classifiers to explore their association with these radiation-induced rectal toxicities. RESULTS: The test set area under the curve (AUC) values were 0.549, 0.741 and 0.669 for proctitis, haemorrhage and GI toxicity prediction using radiomic combined with dosimetric features. The AUC value reached 0.747 for the ensembled radiomic-dosimetric model for haemorrhage. CONCLUSIONS: Our preliminary results show that region-level pre-treatment planning CT radiomic features have the potential to predict radiation-induced rectal toxicities for prostate cancer. Moreover, when combined with region-level dosimetric features and using ensemble learning, the model prediction performance slightly improved.


Gastrointestinal Diseases , Proctitis , Prostatic Neoplasms , Radiation Injuries , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Rectum/diagnostic imaging , Radiometry/methods , Proctitis/diagnostic imaging , Proctitis/etiology , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology , Machine Learning
2.
Acta Oncol ; 62(2): 166-173, 2023 Feb.
Article En | MEDLINE | ID: mdl-36802351

BACKGROUND: The irradiation of sub-regions of the parotid has been linked to xerostomia development in patients with head and neck cancer (HNC). In this study, we compared the xerostomia classification performance of radiomics features calculated on clinically relevant and de novo sub-regions of the parotid glands of HNC patients. MATERIAL AND METHODS: All patients (N = 117) were treated with TomoTherapy in 30-35 fractions of 2-2.167 Gy per fraction with daily mega-voltage-CT (MVCT) acquisition for image-guidance purposes. Radiomics features (N = 123) were extracted from daily MVCTs for the whole parotid gland and nine sub-regions. The changes in feature values after each complete week of treatment were considered as predictors of xerostomia (CTCAEv4.03, grade ≥ 2) at 6 and 12 months. Combinations of predictors were generated following the removal of statistically redundant information and stepwise selection. The classification performance of the logistic regression models was evaluated on train and test sets of patients using the Area Under the Curve (AUC) associated with the different sub-regions at each week of treatment and benchmarked with the performance of models solely using dose and toxicity at baseline. RESULTS: In this study, radiomics-based models predicted xerostomia better than standard clinical predictors. Models combining dose to the parotid and xerostomia scores at baseline yielded an AUCtest of 0.63 and 0.61 for xerostomia prediction at 6 and 12 months after radiotherapy while models based on radiomics features extracted from the whole parotid yielded a maximum AUCtest of 0.67 and 0.75, respectively. Overall, across sub-regions, maximum AUCtest was 0.76 and 0.80 for xerostomia prediction at 6 and 12 months. Within the first two weeks of treatment, the cranial part of the parotid systematically yielded the highest AUCtest. CONCLUSION: Our results indicate that variations of radiomics features calculated on sub-regions of the parotid glands can lead to earlier and improved prediction of xerostomia in HNC patients.


Head and Neck Neoplasms , Parotid Gland , Xerostomia , Head and Neck Neoplasms/radiotherapy , Xerostomia/complications , Humans , Radiomics , Parotid Gland/diagnostic imaging , Parotid Gland/radiation effects , Radiotherapy Dosage , Image Processing, Computer-Assisted , Male , Female , Middle Aged , Aged
3.
Phys Imaging Radiat Oncol ; 25: 100404, 2023 Jan.
Article En | MEDLINE | ID: mdl-36660107

Background and purpose: While core to the scientific approach, reproducibility of experimental results is challenging in radiomics studies. A recent publication identified radiomics features that are predictive of late irradiation-induced toxicity in head and neck cancer (HNC) patients. In this study, we assessed the generalisability of these findings. Materials and Methods: The procedure described in the publication in question was applied to a cohort of 109 HNC patients treated with 50-70 Gy in 20-35 fractions using helical radiotherapy although there were inherent differences between the two patient populations and methodologies. On each slice of the planning CT with delineated parotid and submandibular glands, the imaging features that were previously identified as predictive of moderate-to-severe xerostomia and sticky saliva 12 months post radiotherapy (Xer12m and SS12m) were calculated. Specifically, Short Run Emphasis (SRE) and maximum CT intensity (maxHU) were evaluated for improvement in prediction of Xer12m and SS12m respectively, compared to models solely using baseline toxicity and mean dose to the salivary glands. Results: None of the associations previously identified as statistically significant and involving radiomics features in univariate or multivariate models could be reproduced on our cohort. Conclusion: The discrepancies observed between the results of the two studies delineate limits to the generalisability of the previously reported findings. This may be explained by the differences in the approaches, in particular the imaging characteristics and subsequent methodological implementation. This highlights the importance of external validation, high quality reporting guidelines and standardisation protocols to ensure generalisability, replication and ultimately clinical implementation.

4.
Phys Imaging Radiat Oncol ; 24: 95-101, 2022 Oct.
Article En | MEDLINE | ID: mdl-36386445

Background and purpose: The images acquired during radiotherapy for image-guidance purposes could be used to monitor patient-specific response to irradiation and improve treatment personalisation. We investigated whether the kinetics of radiomics features from daily mega-voltage CT image-guidance scans (MVCT) improve prediction of moderate-to-severe xerostomia compared to dose/volume parameters in radiotherapy of head-and-neck cancer (HNC). Materials and Methods: All included HNC patients (N = 117) received 30 or more fractions of radiotherapy with daily MVCTs. Radiomics features were calculated on the contra-lateral parotid glands of daily MVCTs. Their variations over time after each complete week of treatment were used to predict moderate-to-severe xerostomia (CTCAEv4.03 grade ≥ 2) at 6, 12 and 24 months post-radiotherapy. After dimensionality reduction, backward/forward selection was used to generate combinations of predictors.Three types of logistic regression model were generated for each follow-up time: 1) a pre-treatment reference model using dose/volume parameters, 2) a combination of dose/volume and radiomics-based predictors, and 3) radiomics-based predictors. The models were internally validated by cross-validation and bootstrapping and their performance evaluated using Area Under the Curve (AUC) on separate training and testing sets. Results: Moderate-to-severe xerostomia was reported by 46 %, 33 % and 26 % of the patients at 6, 12 and 24 months respectively. The selected models using radiomics-based features extracted at or before mid-treatment outperformed the dose-based models with an AUCtrain/AUCtest of 0.70/0.69, 0.76/0.74, 0.86/0.86 at 6, 12 and 24 months, respectively. Conclusion: Our results suggest that radiomics features calculated on MVCTs from the first half of the radiotherapy course improve prediction of moderate-to-severe xerostomia in HNC patients compared to a dose-based pre-treatment model.

5.
JNCI Cancer Spectr ; 6(4)2022 07 01.
Article En | MEDLINE | ID: mdl-35877084

BACKGROUND: STAMPEDE previously reported adding upfront docetaxel improved overall survival for prostate cancer patients starting long-term androgen deprivation therapy. We report long-term results for non-metastatic patients using, as primary outcome, metastatic progression-free survival (mPFS), an externally demonstrated surrogate for overall survival. METHODS: Standard of care (SOC) was androgen deprivation therapy with or without radical prostate radiotherapy. A total of 460 SOC and 230 SOC plus docetaxel were randomly assigned 2:1. Standard survival methods and intention to treat were used. Treatment effect estimates were summarized from adjusted Cox regression models, switching to restricted mean survival time if non-proportional hazards. mPFS (new metastases, skeletal-related events, or prostate cancer death) had 70% power (α = 0.05) for a hazard ratio (HR) of 0.70. Secondary outcome measures included overall survival, failure-free survival (FFS), and progression-free survival (PFS: mPFS, locoregional progression). RESULTS: Median follow-up was 6.5 years with 142 mPFS events on SOC (3 year and 54% increases over previous report). There was no good evidence of an advantage to SOC plus docetaxel on mPFS (HR = 0.89, 95% confidence interval [CI] = 0.66 to 1.19; P = .43); with 5-year mPFS 82% (95% CI = 78% to 87%) SOC plus docetaxel vs 77% (95% CI = 73% to 81%) SOC. Secondary outcomes showed evidence SOC plus docetaxel improved FFS (HR = 0.70, 95% CI = 0.55 to 0.88; P = .002) and PFS (nonproportional P = .03, restricted mean survival time difference = 5.8 months, 95% CI = 0.5 to 11.2; P = .03) but no good evidence of overall survival benefit (125 SOC deaths; HR = 0.88, 95% CI = 0.64 to 1.21; P = .44). There was no evidence SOC plus docetaxel increased late toxicity: post 1 year, 29% SOC and 30% SOC plus docetaxel grade 3-5 toxicity. CONCLUSIONS: There is robust evidence that SOC plus docetaxel improved FFS and PFS (previously shown to increase quality-adjusted life-years), without excess late toxicity, which did not translate into benefit for longer-term outcomes. This may influence patient management in individual cases.


Prostatic Neoplasms , Androgen Antagonists/therapeutic use , Androgens , Docetaxel/therapeutic use , Humans , Male , Prostate-Specific Antigen , Prostatic Neoplasms/drug therapy
6.
PLoS One ; 17(4): e0265399, 2022.
Article En | MEDLINE | ID: mdl-35413057

Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health conditions and can be used for fast, accurate and non-invasive diagnostics. Gas chromatography-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited by expert-driven data analysis that is time-consuming, subjective and may introduce errors. We propose a machine learning-based system to perform GC-MS data analysis that exploits deep learning pattern recognition ability to learn and automatically detect VOCs directly from raw data, thus bypassing expert-led processing. We evaluate this new approach on clinical samples and with four types of convolutional neural networks (CNNs): VGG16, VGG-like, densely connected and residual CNNs. The proposed machine learning methods showed to outperform the expert-led analysis by detecting a significantly higher number of VOCs in just a fraction of time while maintaining high specificity. These results suggest that the proposed novel approach can help the large-scale deployment of breath-based diagnosis by reducing time and cost, and increasing accuracy and consistency.


Breath Tests , Volatile Organic Compounds , Biomarkers/analysis , Breath Tests/methods , Gas Chromatography-Mass Spectrometry/methods , Humans , Machine Learning , Volatile Organic Compounds/analysis
8.
Radiother Oncol ; 165: 75-86, 2021 12.
Article En | MEDLINE | ID: mdl-34619236

Rapid and relentless technological advances in an ever-more globalized world have shaped the field of radiation oncology in which we practise today. These developments have drastically modified the habitus1 of health professionals and researchers at an individual and organisational level. In this article we present an analysis of trends in radiation oncology research over the last half a century. To do so, the data from >350,000 scientific publications pertaining to a yearly search of the PubMed database with the keywords cancer radiotherapy was analysed. This analysis revealed that, over the years, radiotherapy research output has declined relative to alternative cancer therapies, representing 64% in 1970 it decreased to 31% in 2019. Also, the pace of research has significantly accelerated with, in the last 15 years, a doubling in the number of articles published by the 10% most productive researchers. Researchers are also facing stronger competition today with a proportion of first authors that will never get to publish as a last author increasing steadily from 58% in 1970 to 84% in 2000. Additionally, radiotherapy research output is extremely unequally distributed in the world, with Africa and South America contributing to ∼3% of radiotherapy articles in 2019 while representing 23% of the world's population. This disparity, reflecting economic situations and radiotherapy capabilities, has a knock-on effect for the provision of routine clinical treatment. Since research activity is inherent to delivery of high quality clinical care, this contributes to the global inequity of radiotherapy services. Learning from these trends is crucial for the future not only of radiation oncology research but also for effective and equitable cancer care.


Neoplasms , Radiation Oncology , Databases, Factual , Humans , Neoplasms/radiotherapy , Research
9.
J Breath Res ; 15(1): 016004, 2020 10 24.
Article En | MEDLINE | ID: mdl-33103660

Radiation dose is important in radiotherapy. Too little, and the treatment is not effective, too much causes radiation toxicity. A biochemical measurement of the effect of radiotherapy would be useful in personalisation of this treatment. This study evaluated changes in exhaled breath volatile organic compounds (VOC) associated with radiotherapy with thermal desorption gas chromatography mass-spectrometry followed by data processing and multivariate statistical analysis. Further the feasibility of adopting gas chromatography ion mobility spectrometry for radiotherapy point-of-care breath was assessed. A total of 62 participants provided 240 end-tidal 1 dm3 breath samples before radiotherapy and at 1, 3, and 6 h post-exposure, that were analysed by thermal-desorption/gas-chromatography/quadrupole mass-spectrometry. Data were registered by retention-index and mass-spectra before multivariate statistical analyses identified candidate markers. A panel of sulfur containing compounds (thio-VOC) were observed to increase in concentration over the 6 h following irradiation. 3-methylthiophene (80 ng.m-3 to 790 ng.m-3) had the lowest abundance while 2-thiophenecarbaldehyde(380 ng.m-3 to 3.85 µg.m-3) the highest; note, exhaled 2-thiophenecarbaldehyde has not been observed previously. The putative tumour metabolite 2,4-dimethyl-1-heptene concentration reduced by an average of 73% over the same time. Statistical scoring based on the signal intensities thio-VOC and 3-methylthiophene appears to reflect individuals' responses to radiation exposure from radiotherapy. The thio-VOC are hypothesised to derive from glutathione and Maillard-based reactions and these are of interest as they are associated with radio-sensitivity. Further studies with continuous monitoring are needed to define the development of the breath biochemistry response to irradiation and to determine the optimum time to monitor breath for radiotherapy markers. Consequently, a single 0.5 cm3 breath-sample gas chromatography-ion mobility approach was evaluated. The calibrated limit of detection for 3-methylthiophene was 10 µg.m-3 with a lower limit of the detector's response estimated to be 210 fg.s-1; the potential for a point-of-care radiation exposure study exists.


Biomarkers/analysis , Breath Tests/methods , Radiation , Aged , Calibration , Exhalation , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Principal Component Analysis , Volatile Organic Compounds/analysis
10.
BMJ Open ; 10(12): e041005, 2020 12 31.
Article En | MEDLINE | ID: mdl-33384390

INTRODUCTION: Daily radiotherapy delivered with radiosensitisation offers patients with muscle invasive bladder cancer (MIBC) comparable outcomes to cystectomy with functional organ preservation. Most recurrences following radiotherapy occur within the bladder. Increasing the delivered radiotherapy dose to the tumour may further improve local control. Developments in image-guided radiotherapy have allowed bladder tumour-focused 'plan of the day' radiotherapy delivery. We aim to test within a randomised multicentre phase II trial whether this technique will enable dose escalation with acceptable rates of toxicity. METHODS AND ANALYSIS: Patients with T2-T4aN0M0 unifocal MIBC will be randomised (1:1:2) between standard/control whole bladder single plan radiotherapy, standard dose adaptive tumour-focused radiotherapy or dose-escalated adaptive tumour-focused radiotherapy (DART). Adaptive tumour-focused radiotherapy will use a library of three plans (small, medium and large) for treatment. A cone beam CT taken prior to each treatment will be used to visualise the anatomy and inform selection of the most appropriate plan for treatment.Two radiotherapy fractionation schedules (32f and 20f) are permitted. A minimum of 120 participants will be randomised in each fractionation cohort (to ensure 57 evaluable DART patients per cohort).A comprehensive radiotherapy quality assurance programme including pretrial and on-trial components is instituted to ensure standardisation of radiotherapy planning and delivery.The trial has a two-stage non-comparative design. The primary end point of stage I is the proportion of patients meeting predefined normal tissue constraints in the DART group. The primary end point of stage II is late Common Terminology Criteria for Adverse Events grade 3 or worse toxicity aiming to exclude a rate of >20% (80% power and 5% alpha, one sided) in each DART fractionation cohort. Secondary end points include locoregional MIBC control, progression-free survival overall survival and patient-reported outcomes. ETHICS AND DISSEMINATION: This clinical trial is approved by the London-Surrey Borders Research Ethics Committee (15/LO/0539). The results when available will be disseminated via peer-reviewed scientific journals, conference presentations and submission to regulatory authorities. TRIAL REGISTRATION NUMBER: NCT02447549; Pre-results.


Urinary Bladder Neoplasms , Cystectomy , Dose Fractionation, Radiation , Humans , Multicenter Studies as Topic , Neoplasm Recurrence, Local/radiotherapy , Randomized Controlled Trials as Topic , Urinary Bladder Neoplasms/radiotherapy , Urinary Bladder Neoplasms/surgery
11.
J Appl Clin Med Phys ; 20(1): 6-16, 2019 Jan.
Article En | MEDLINE | ID: mdl-30536528

BACKGROUND: Independent verification of the dose delivered by complex radiotherapy can be performed by electronic portal imaging device (EPID) dosimetry. This paper presents 5-yr EPID in vivo dosimetry (IVD) data obtained using the Dosimetry Check (DC) software on a large cohort including breast, lung, prostate, and head and neck (H&N) cancer patients. MATERIAL AND METHODS: The difference between in vivo dose measurements obtained by DC and point doses calculated by the Eclipse treatment planning system was obtained on 3795 radiotherapy patients treated with volumetric modulated arc therapy (VMAT) (n = 842) and three-dimensional conformal radiotherapy (3DCRT) (n = 2953) at 6, 10, and 15 MV. In cases where the dose difference exceeded ±10% further inspection and additional phantom measurements were performed. RESULTS: The mean and standard deviation ( µ ± σ ) of the percentage difference in dose obtained by DC and calculated by Eclipse in VMAT was: 0.19 ± 3.89 % in brain, 1.54 ± 4.87 % in H&N, and 1.23 ± 4.61 % in prostate cancer. In 3DCRT, this was 1.79 ± 3.51 % in brain, - 2.95 ± 5.67 % in breast, - 1.43 ± 4.38 % in bladder, 1.66 ± 4.77 % in H&N, 2.60 ± 5.35% in lung and - 3.62 ± 4.00 % in prostate cancer. A total of 153 plans exceeded the ±10% alert criteria, which included: 88 breast plans accounting for 7.9% of all breast treatments; 28 H&N plans accounting for 4.4% of all H&N treatments; and 12 prostate plans accounting for 3.5% of all prostate treatments. All deviations were found to be as a result of patient-related anatomical deviations and not from procedural errors. CONCLUSIONS: This preliminary data shows that EPID-based IVD with DC may not only be useful in detecting errors but has the potential to be used to establish site-specific dose action levels. The approach is straightforward and has been implemented as a radiographer-led service with no disruption to the patient and no impact on treatment time.


Breast Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , In Vivo Dosimetry/standards , Lung Neoplasms/radiotherapy , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Female , Humans , Male , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Software
12.
Eur Urol Oncol ; 1(6): 449-458, 2018 12.
Article En | MEDLINE | ID: mdl-31158087

BACKGROUND: Results from large randomised controlled trials have shown that adding docetaxel to the standard of care (SOC) for men initiating hormone therapy for prostate cancer (PC) prolongs survival for those with metastatic disease and prolongs failure-free survival for those without. To date there has been no formal assessment of whether funding docetaxel in this setting represents an appropriate use of UK National Health Service (NHS) resources. OBJECTIVE: To assess whether administering docetaxel to men with PC starting long-term hormone therapy is cost-effective in a UK setting. DESIGN, SETTING, AND PARTICIPANTS: We modelled health outcomes and costs in the UK NHS using data collected within the STAMPEDE trial, which enrolled men with high-risk, locally advanced metastatic or recurrent PC starting first-line hormone therapy. INTERVENTION: SOC was hormone therapy for ≥2 yr and radiotherapy in some patients. Docetaxel (75mg/m2) was administered alongside SOC for six three-weekly cycles. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The model generated lifetime predictions of costs, changes in survival duration, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). RESULTS AND LIMITATIONS: The model predicted that docetaxel would extend survival (discounted quality-adjusted survival) by 0.89 yr (0.51) for metastatic PC and 0.78 yr (0.39) for nonmetastatic PC, and would be cost-effective in metastatic PC (ICER £5514/QALY vs SOC) and nonmetastatic PC (higher QALYs, lower costs vs SOC). Docetaxel remained cost-effective in nonmetastatic PC when the assumption of no survival advantage was modelled. CONCLUSIONS: Docetaxel is cost-effective among patients with nonmetastatic and metastatic PC in a UK setting. Clinicians should consider whether the evidence is now sufficiently compelling to support docetaxel use in patients with nonmetastatic PC, as the opportunity to offer docetaxel at hormone therapy initiation will be missed for some patients by the time more mature survival data are available. PATIENT SUMMARY: Starting docetaxel chemotherapy alongside hormone therapy represents a good use of UK National Health Service resources for patients with prostate cancer that is high risk or has spread to other parts of the body.


Antineoplastic Combined Chemotherapy Protocols/economics , Cost-Benefit Analysis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/mortality , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Docetaxel/administration & dosage , Docetaxel/economics , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Prognosis , Prostatic Neoplasms/economics , Prostatic Neoplasms/pathology , Quality-Adjusted Life Years , Standard of Care , United Kingdom
13.
BJU Int ; 120(5): 639-650, 2017 11.
Article En | MEDLINE | ID: mdl-28453896

OBJECTIVES: To test the feasibility of a randomised trial in muscle-invasive bladder cancer (MIBC) and compare outcomes in patients who receive neoadjuvant chemotherapy followed by radical cystectomy (RC) or selective bladder preservation (SBP), where definitive treatment [RC or radiotherapy (RT)] is determined by response to chemotherapy. PATIENTS AND METHODS: SPARE is a multicentre randomised controlled trial comparing RC and SBP in patients with MIBC staged T2-3 N0 M0, fit for both treatment strategies and receiving three cycles of neoadjuvant chemotherapy. Patients were randomised between RC and SBP before a cystoscopy after cycle three of neoadjuvant chemotherapy. Patients with ≤T1 residual tumour received a fourth cycle of neoadjuvant chemotherapy in both groups, followed by radical RT in the SBP group and RC in in the RC group; non-responders in both groups proceeded immediately to RC following cycle three. Feasibility study primary endpoints were accrual rate and compliance with assigned treatment strategy. The phase III trial was designed to demonstrate non-inferiority of SBP in terms of overall survival (OS) in patients whose tumours responded to neoadjuvant chemotherapy. Secondary endpoints included patient-reported quality of life, clinician assessed toxicity, loco-regional recurrence-free survival, and rate of salvage RC after SBP. RESULTS: Trial recruitment was challenging and below the predefined target with 45 patients recruited in 30 months (25 RC; 20 SBP). Non-compliance with assigned treatment strategy was frequent, six of the 25 patients (24%) randomised to RC received RT. Long-term bladder preservation rate was 11/15 (73%) in those who received RT per protocol. OS survival was not significantly different between groups. CONCLUSIONS: Randomising patients with MIBC between RC and SBP based on response to neoadjuvant chemotherapy was not feasible in the UK health system. Strong clinician and patient preferences for treatments impacted willingness to undergo randomisation and acceptance of treatment allocation. Due to the few participants, firm conclusions about disease and toxicity outcomes cannot be drawn.


Cystectomy/statistics & numerical data , Organ Sparing Treatments/statistics & numerical data , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/surgery , Urinary Bladder/surgery , Adult , Aged , Aged, 80 and over , Cystectomy/methods , Feasibility Studies , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Organ Sparing Treatments/methods , Treatment Outcome , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/pathology
14.
Analyst ; 141(20): 5900, 2016 10 03.
Article En | MEDLINE | ID: mdl-27704094

Correction for 'Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors' by Victoria L. Camus, et al., Analyst, 2016, 141, 5056-5061.

15.
Nanoscale ; 8(37): 16710-16718, 2016 Sep 22.
Article En | MEDLINE | ID: mdl-27714168

Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function. The magnitude of the redox potential gradient can be quantified as a free energy difference (ΔG) and used as a measurement of MTS viability. We found that by delivering different doses of radiotherapy to MTS we could correlate loss of ΔG with increasing therapeutic dose. In addition, we found that resistance to drug therapy was indicated by an increase in ΔG. This robust and reproducible technique allows interrogation of an in vitro tumor-model's bioenergetic response to therapy, indicating its potential as a tool for therapy development.


Nanostructures , Neoplasms/chemistry , Spectrum Analysis, Raman , Spheroids, Cellular/chemistry , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Oxidation-Reduction , Tumor Microenvironment
16.
Analyst ; 141(17): 5056-61, 2016 08 15.
Article En | MEDLINE | ID: mdl-27310732

Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning.


Dose Fractionation, Radiation , Prostatic Neoplasms/radiotherapy , Spectrum Analysis, Raman , Spheroids, Cellular/radiation effects , Cell Culture Techniques , Cell Line, Tumor , Humans , Male
17.
Vet Radiol Ultrasound ; 57(2): 113-23, 2016.
Article En | MEDLINE | ID: mdl-26777133

The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms.


Animal Diseases/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Neoplasms/veterinary , Radiation Oncology/methods , Radiotherapy, Image-Guided/veterinary , Animals , Image Interpretation, Computer-Assisted/instrumentation , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/veterinary , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Positron-Emission Tomography/veterinary , Radiation Oncology/instrumentation , Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Image-Guided/methods , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/veterinary
18.
Lancet ; 387(10024): 1163-77, 2016 Mar 19.
Article En | MEDLINE | ID: mdl-26719232

BACKGROUND: Long-term hormone therapy has been the standard of care for advanced prostate cancer since the 1940s. STAMPEDE is a randomised controlled trial using a multiarm, multistage platform design. It recruits men with high-risk, locally advanced, metastatic or recurrent prostate cancer who are starting first-line long-term hormone therapy. We report primary survival results for three research comparisons testing the addition of zoledronic acid, docetaxel, or their combination to standard of care versus standard of care alone. METHODS: Standard of care was hormone therapy for at least 2 years; radiotherapy was encouraged for men with N0M0 disease to November, 2011, then mandated; radiotherapy was optional for men with node-positive non-metastatic (N+M0) disease. Stratified randomisation (via minimisation) allocated men 2:1:1:1 to standard of care only (SOC-only; control), standard of care plus zoledronic acid (SOC + ZA), standard of care plus docetaxel (SOC + Doc), or standard of care with both zoledronic acid and docetaxel (SOC + ZA + Doc). Zoledronic acid (4 mg) was given for six 3-weekly cycles, then 4-weekly until 2 years, and docetaxel (75 mg/m(2)) for six 3-weekly cycles with prednisolone 10 mg daily. There was no blinding to treatment allocation. The primary outcome measure was overall survival. Pairwise comparisons of research versus control had 90% power at 2·5% one-sided α for hazard ratio (HR) 0·75, requiring roughly 400 control arm deaths. Statistical analyses were undertaken with standard log-rank-type methods for time-to-event data, with hazard ratios (HRs) and 95% CIs derived from adjusted Cox models. This trial is registered at ClinicalTrials.gov (NCT00268476) and ControlledTrials.com (ISRCTN78818544). FINDINGS: 2962 men were randomly assigned to four groups between Oct 5, 2005, and March 31, 2013. Median age was 65 years (IQR 60-71). 1817 (61%) men had M+ disease, 448 (15%) had N+/X M0, and 697 (24%) had N0M0. 165 (6%) men were previously treated with local therapy, and median prostate-specific antigen was 65 ng/mL (IQR 23-184). Median follow-up was 43 months (IQR 30-60). There were 415 deaths in the control group (347 [84%] prostate cancer). Median overall survival was 71 months (IQR 32 to not reached) for SOC-only, not reached (32 to not reached) for SOC + ZA (HR 0·94, 95% CI 0·79-1·11; p=0·450), 81 months (41 to not reached) for SOC + Doc (0·78, 0·66-0·93; p=0·006), and 76 months (39 to not reached) for SOC + ZA + Doc (0·82, 0·69-0·97; p=0·022). There was no evidence of heterogeneity in treatment effect (for any of the treatments) across prespecified subsets. Grade 3-5 adverse events were reported for 399 (32%) patients receiving SOC, 197 (32%) receiving SOC + ZA, 288 (52%) receiving SOC + Doc, and 269 (52%) receiving SOC + ZA + Doc. INTERPRETATION: Zoledronic acid showed no evidence of survival improvement and should not be part of standard of care for this population. Docetaxel chemotherapy, given at the time of long-term hormone therapy initiation, showed evidence of improved survival accompanied by an increase in adverse events. Docetaxel treatment should become part of standard of care for adequately fit men commencing long-term hormone therapy. FUNDING: Cancer Research UK, Medical Research Council, Novartis, Sanofi-Aventis, Pfizer, Janssen, Astellas, NIHR Clinical Research Network, Swiss Group for Clinical Cancer Research.


Androgen Antagonists/administration & dosage , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Diphosphonates/administration & dosage , Imidazoles/administration & dosage , Prostatic Neoplasms/drug therapy , Taxoids/administration & dosage , Adult , Aged , Aged, 80 and over , Androgen Antagonists/adverse effects , Antineoplastic Agents, Hormonal/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Diphosphonates/adverse effects , Disease Progression , Docetaxel , Drug Administration Schedule , Humans , Imidazoles/adverse effects , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Metastasis , Taxoids/adverse effects , Treatment Outcome , Zoledronic Acid
19.
Healthc Technol Lett ; 2(5): 123-8, 2015 Oct.
Article En | MEDLINE | ID: mdl-26609418

To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required.

20.
Acta Oncol ; 54(9): 1543-50, 2015.
Article En | MEDLINE | ID: mdl-26397055

BACKGROUND: Prostate cancer is now the only solid organ cancer in which therapy is commonly applied to the whole gland. One of the main challenges in adopting focal boost or true focal therapy is in the accurate mapping of cancer foci defined on magnetic resonance (MR) images onto the computerised tomography (CT) images used for radiotherapy planning. MATERIAL AND METHODS: Prostate cancer patients (n = 14) previously treated at the Edinburgh Cancer Centre (ECC) were selected for this study. All patients underwent MR scanning for the purpose of diagnosis and staging. Patients received three months of androgen deprivation hormone therapy followed by a radiotherapy planning CT scan. The dominant focal prostate lesions were identified on MR scans by a radiologist and a novel image analysis approach was used to map the location of the dominant focal lesion from MR to CT. An offline planning study was undertaken on suitable patients (n = 7) to investigate boosting of the radiation dose to the tumour using a stereotactic ablative body radiotherapy (SABR) technique. RESULTS: The non-rigid registration algorithm showed clinically acceptable estimates of the location of the dominant focal disease on all CT image data of patients suitable for a boost treatment. Standard rigid registration was found to produce unacceptable estimates of the dominant focal lesion on CT. A SABR boost dose of 47.5 Gy was delivered to the dominant focal lesion of all patients whilst meeting all dose-volume histogram (DVH) constraints. Normal tissue complication probability (NTCP) for the rectum decreased from 1.28% to 0.73% with this method. CONCLUSIONS: These preliminary results demonstrate the potential of this image analysis method for reliably mapping dominant focal disease within the prostate from MR images onto planning CT images. Significant dose escalation using a simultaneous integrated SABR boost was achieved in all patients.


Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Algorithms , Androgen Antagonists/therapeutic use , Humans , Male , Pilot Projects , Prostatic Neoplasms/drug therapy , Radiation Dose Hypofractionation
...